Engineering a Copper Single-Atom Electron Bridge to Achieve Efficient Photocatalytic CO2 Conversion

Angew Chem Int Ed Engl. 2023 Mar 20;62(13):e202218460. doi: 10.1002/anie.202218460. Epub 2023 Feb 20.

Abstract

Developing highly efficient and stable photocatalysts for the CO2 reduction reaction (CO2 RR) remains a great challenge. We designed a Z-Scheme photocatalyst with N-Cu1 -S single-atom electron bridge (denoted as Cu-SAEB), which was used to mediate the CO2 RR. The production of CO and O2 over Cu-SAEB is as high as 236.0 and 120.1 μmol g-1 h-1 in the absence of sacrificial agents, respectively, outperforming most previously reported photocatalysts. Notably, the as-designed Cu-SAEB is highly stable throughout 30 reaction cycles, totaling 300 h, owing to the strengthened contact interface of Cu-SAEB, and mediated by the N-Cu1 -S atomic structure. Experimental and theoretical calculations indicated that the SAEB greatly promoted the Z-scheme interfacial charge-transport process, thus leading to great enhancement of the photocatalytic CO2 RR of Cu-SAEB. This work represents a promising platform for the development of highly efficient and stable photocatalysts that have potential in CO2 conversion applications.

Keywords: CO2RR; Electron Bridge; MIL-125-NH2; Single-Atom; Z-Scheme.