Robust cellulose-based hydrogel marbles with excellent stability for gas sensing

Carbohydr Polym. 2023 Apr 15:306:120617. doi: 10.1016/j.carbpol.2023.120617. Epub 2023 Jan 25.

Abstract

Liquid marbles, as particle-armored droplets, have potential applications in microreactors, biomedicine, controlled release and gas detection. To improve the stability and biocompatibility of marble, biocompatible cellulose acetate particles and 3-allyloxy-2-hydroxy-propyl-cellulose (AHP-cellulose) were used to fabricate robust cellulose-based liquid marbles with excellent stability. Liquid marble was gelled into hydrogel marble via blue-light-irradiated polymerization of AHP-cellulose. The mechanical properties of cellulose-based hydrogel marble are superior to those of liquid marble. The rupture height of liquid marble is 10.5 m, which is 420 times greater than that of water marble (0.025 m). Surprisingly, the hydrogel marble with a 3 % AHP-cellulose concentration remained intact even after being dropped from a height of 50 m, which is comparable with the ability of a leather ball to withstand larger impact. When released from a height of 60 mm, hydrogel marble bounced to approximately 25.5 mm, 881 % higher than liquid marble (2.6 mm). Hydrogel marble exhibited long-lasting stability and was capable of monitoring ammonia with a detection limit of 365.2 mg/m3. The biocompatible cellulose-based hydrogel marble with excellent mechanical stability and reusability detection has great potential in chemical and environmental engineering as gas sensors.

Keywords: Cellulose; Gas sensing; Hydrogel; Marble; Stability.