Intratumoral IFN-γ or topical TLR7 agonist promotes infiltration of melanoma metastases by T lymphocytes expanded in the blood after cancer vaccine

J Immunother Cancer. 2023 Feb;11(2):e005952. doi: 10.1136/jitc-2022-005952.

Abstract

Background: Immune-mediated melanoma regression relies on melanoma-reactive T cells infiltrating tumor. Cancer vaccines increase circulating melanoma-reactive T cells, but little is known about vaccine-induced circulating lymphocytes (viCLs) homing to tumor or whether interventions are needed to enhance infiltration. We hypothesized that viCLs infiltrate melanoma metastases, and intratumoral interferon (IFN)-γ or Toll-like receptor 7 (TLR7) agonism enhances infiltration.

Methods: Patients on two clinical trials (Mel51 (NCT00977145), Mel53 (NCT01264731)) received vaccines containing 12 class I major histocompatibility complex-restricted melanoma peptides (12MP). In Mel51, tumor was injected with IFN-γ on day 22, and biopsied on days 1, 22, and 24. In Mel53, dermal metastases were treated with topical imiquimod, a TLR7 agonist, for 12 weeks, and biopsied on days 1, 22, and 43. For patients with circulating T-cell responses to 12MP by IFN-γ ELISpot assays, DNA was extracted from peripheral blood mononuclear cells (PBMCs) pre-vaccination and at peak T-cell response, and from tumor biopsies, which underwent T-cell receptor sequencing. This enabled identification of clonotypes induced in PBMCs post-vaccination (viCLs) and present in tumor post-vaccination, but not pre-vaccination.

Results: Six patients with T-cell responses post-vaccination (Mel51 n = 4, Mel53 n = 2) were evaluated for viCLs and vaccine-induced tumor infiltrating lymphocytes (viTILs). All six patients had viCLs, five of whom were evaluable for viTILs in tumor post-vaccination alone. Mel51 patients had viTILs identified in day 22 tumors, post-vaccination and before IFN-γ (median = 2, range = 0-24). This increased in day 24 tumors after IFN-γ (median = 30, range = 4-74). Mel53 patients had viTILs identified in day 22 tumors, post-vaccination plus imiquimod (median = 33, range = 2-64). Three of five evaluable patients across both trials had viTILs with vaccination alone. All five had enhancement of viTILs with tumor-directed therapy. viTILs represented 0.0-2.9% of total T cells after vaccination alone, which increased to 0.6-8.7% after tumor-directed therapy.

Conclusion: Cancer vaccines induce expansion of new viCLs, which infiltrate melanoma metastases in some patients. Our findings identify opportunities to combine vaccines with tumor-directed therapies to enhance T-cell infiltration and T cell-mediated tumor control. These combinations hold promise in improving the therapeutic efficacy of antigen-specific therapies for solid malignancies.

Keywords: CD8-Positive T-Lymphocytes; Lymphocytes, Tumor-Infiltrating; Melanoma; Tumor Microenvironment; Vaccination.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adjuvants, Immunologic / therapeutic use
  • Cancer Vaccines* / therapeutic use
  • Humans
  • Imiquimod
  • Interferon-gamma / therapeutic use
  • Lymphocytes, Tumor-Infiltrating
  • Melanoma* / drug therapy
  • T-Lymphocytes
  • Toll-Like Receptor 7

Substances

  • Cancer Vaccines
  • Toll-Like Receptor 7
  • Imiquimod
  • Interferon-gamma
  • Adjuvants, Immunologic
  • TLR7 protein, human

Associated data

  • ClinicalTrials.gov/NCT00977145
  • ClinicalTrials.gov/NCT01264731