"Thiol-ene" crosslinked polybenzimidazoles anion exchange membrane with enhanced performance and durability

J Colloid Interface Sci. 2023 May 15:638:349-362. doi: 10.1016/j.jcis.2023.01.137. Epub 2023 Feb 1.

Abstract

To address the "trade-off" between conductivity and stability of anion exchange membranes (AEMs), we developed a series of crosslinked AEMs by using polybenzimidazole with norbornene (cPBI-Nb) as backbone and the crosslinked structure was fabricated by adopting click chemical between thiol and vinyl-group. Meanwhile, the hydrophilic properties of the dithiol cross-linker were regulated to explore the effect for micro-phase separation morphology and hydroxide ion conductivity. As result, the AEMs with hydrophilic crosslinked structure (PcPBI-Nb-C2) not only had apparent micro-phase separation morphology and high OH- conductivity of 105.54 mS/cm at 80 °C, but also exhibited improved mechanical properties, dimensional stability (swelling ratio < 15%) and chemical stability (90.22 % mass maintaining in Fenton's reagent at 80 °C for 24 h, 78.30 % conductivity keeping in 2 M NaOH at 80 °C for 2016 h). In addition, the anion exchange membranes water electrolysis (AEMWEs) using PcPBI-Nb-C2 as AEMs achieved the current density of 368 mA/cm2 at 2.1 V and the durability over 500 min operated at 150 mA/cm2 under 60 °C. Therefore, this work paves the way for constructing AEMs by introduction of norbornene into polybenzimidazole and formation of hydrophilic crosslinked structure based on "thiol-ene".

Keywords: Anion exchange membrane; Cross-linking; Norbornene; Polybenzimidazoles; Water electrolysis.