Elucidating the Role of CRISPR/Cas in Single-Step Isothermal Nucleic Acid Amplification Testing Assays

Anal Chem. 2023 Feb 21;95(7):3873-3882. doi: 10.1021/acs.analchem.2c05632. Epub 2023 Feb 6.

Abstract

Developing assays that combine CRISPR/Cas and isothermal nucleic acid amplification has become a burgeoning research area due to the novelty and simplicity of CRISPR/Cas and the potential for point-of-care uses. Most current research explores various two-step assays by appending different CRISPR/Cas effectors to the end of different isothermal nucleic acid amplification methods. However, efforts in integrating both components into more ideal single-step assays are scarce, and poor-performing single-step assays have been reported. Moreover, lack of investigations into CRISPR/Cas in single-step assays results in incomplete understanding. To fill this knowledge gap, we conducted a systematic investigation by developing and comparing assays that share the identical recombinase polymerase amplification (RPA) but differ in CRISPR/Cas12a. We found that the addition of CRISPR/Cas12a indeed unlocks signal amplification but, at the same time, impedes RPA and that CRISPR/Cas12a concentration is a key parameter for attenuating RPA impediment and ensuring assay performance. Accordingly, we found that our protospacer adjacent motif (PAM)-free CRISPR/Cas12a-assisted RPA assay, which only moderately impeded RPA at its optimal CRISPR/Cas12a concentration, outperformed its counterparts in assay design, signal, sensitivity, and speed. We also discovered that a new commercial Cas12a effector could also drive our PAM-free CRISPR/Cas12a-assisted RPA assay and reduce its cost, though simultaneously lowering its signal. Our study and the new insights can be broadly applied to steer and facilitate further advances in CRISPR/Cas-based assays.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biological Assay
  • CRISPR-Cas Systems* / genetics
  • Nucleic Acid Amplification Techniques
  • Nucleic Acids*
  • Nucleotidyltransferases
  • Recombinases

Substances

  • Nucleotidyltransferases
  • Recombinases
  • Nucleic Acids