Aromatic and aliphatic hydrocarbon hydroxylation via a formally NiIVO oxidant

Dalton Trans. 2023 Feb 28;52(9):2663-2671. doi: 10.1039/d2dt03949d.

Abstract

The reaction of (NMe4)2[NiII(LPh)(OAc)] (1[OAc], LPh = 2,2',2''-nitrilo-tris-(N-phenylacetamide); OAc = acetate) with 3-chloroperoxybenzoic acid (m-CPBA) resulted in the formation of a self-hydroxylated NiIII-phenolate complex, 2, where one of the phenyl groups of LPh underwent hydroxylation. 2 was characterised by UV-Vis, EPR, and XAS spectroscopies and ESI-MS. 2 decayed to yield a previously characterised NiII-phenolate complex, 3. We postulate that self-hydroxylation was mediated by a formally NiIVO oxidant, formed from the reaction of 1[OAc] with m-CPBA, which undergoes electrophilic aromatic substitution to yield 2. This is supported by an analysis of the kinetic and thermodynamic properties of the reaction of 1[OAc] with m-CPBA. Addition of exogenous hydrocarbon substrates intercepted the self-hydroxylation process, producing hydroxylated products, providing further support for the formally NiIVO entity. This study demonstrates that the reaction between NiII salts and m-CPBA can lead to potent metal-based oxidants, in contrast to recent studies demonstrating carboxyl radical is a radical free-chain reaction initiator in NiII/m-CPBA hydrocarbon oxidation catalysis.