Gold nanoparticles capped with L-glycine, L-cystine, and L-tyrosine: toxicity profiling and antioxidant potential

J Mater Sci. 2023;58(6):2814-2837. doi: 10.1007/s10853-023-08209-9. Epub 2023 Jan 31.

Abstract

Biomolecules-based surface modifications of nanomaterials may yield effective and biocompatible nanoconjugates. This study was designed to evaluate gold nanoconjugates (AuNCs) for their altered antioxidant potential. Gold nanoparticles (AuNPs) and their conjugates gave SPR peaks in the ranges of 512-525 nm, with red or blueshift for different conjugates. Cys-AuNCs demonstrated enhanced (p < 0.05) and Gly-AuNCs (p > 0.05) displayed reduced DPPH activity. Gly-AuNCs and Tyr-AuNCs displayed enhanced ferric-reducing power and hydrogen peroxide scavenging activity, respectively. Cadmium-intoxicated mice were exposed to gold nanomaterials, and the level of various endogenous parameters, i.e., CAT, GST, SOD, GSH, and MTs, was evaluated. GSH and MTs in liver tissues of the cadmium-exposed group (G2) were elevated (p < 0.05), while other groups showed nonsignificance deviations than the control group. It is concluded that these nanoconjugates might provide effective nanomaterials for biomedical applications. However, more detailed studies for their safety profiling are needed before their practical applications.