Rolling Circle Amplification on a Bead: Improving the Detection Time for a Magnetic Bioassay

ACS Omega. 2023 Jan 18;8(4):4391-4397. doi: 10.1021/acsomega.2c07992. eCollection 2023 Jan 31.

Abstract

Detection of pathogens has become increasingly important, especially in the face of outbreaks and epidemics all over the world. Nucleic acid detection techniques provide a solid base to detect and identify pathogens. In recent years, magnetic sensors and magnetic labels have become of more interest due to their simplicity of use, low cost, and versatility. In this work, we have used the isothermal DNA amplification technique of rolling circle amplification (RCA) in combination with oligo-functionalized magnetic nanoparticles. Detection of RCA products takes place through specific binding between magnetic nanoparticles and RCA products. Upon binding, the relaxation frequency of the nanoparticle changes. This change was measured using an AC susceptometer. We showcase that the RCA time can be reduced for a quicker assay when performing the RCA on the surface of micrometer-sized beads, which consequently increases the hydrodynamic volume of the RCA products. This, in turn, increases the Brownian relaxation frequency shift of the nanoparticles upon binding. We performed optimization work to determine the ideal quantity of micrometer-sized particles, oligo-functionalized nanoparticles, and the amplification time of the RCA. We show that the detection of 0.75 fmol of preamplification synthetic target is possible with only 20 min of amplification time. Finally, we showcase the high specificity of the assay, as the functionalized nanoparticles are unable to bind to amplified DNA that does not match their labels. Overall, this paves the way for a simple bioassay that can be used without expensive laboratory equipment for detection of pathogens in outbreak settings and clinics around the world.