Neodymium-Doped Novel Barium Tungstate Nanospindles for the Enhanced Oxygen Evolution Reaction

ACS Omega. 2023 Jan 17;8(4):3745-3754. doi: 10.1021/acsomega.2c05156. eCollection 2023 Jan 31.

Abstract

In this work, pristine, 0.02, 0.04, and 0.06 M neodymium (Nd)-doped barium tungstate nanostructures were synthesized via a simple co-precipitation method for the water oxidation process. The obtained X-ray diffraction high-intensity peak at a 2θ value of 26.4° corresponding to the (112) lattice plane confirmed the formation of a tetragonal structure of BaWO4. Moreover, the BaWO4 morphology was examined by scanning electron microscopy, which showed the existence of nanospindles. An energy-dispersive X-ray spectrum confirmed the subsistence of the produced materials, for example, barium (Ba), tungsten (W), oxide (O), and neodymium (Nd), with weight percentages of 28.58, 46.63, 16.64, and 8.16%, respectively. The 0.04 M Nd-doped BaWO4 product was explored to attain a high surface area of 18.18 m2/g, a pore volume of 0.079 cm3/g, and a pore diameter of 2.215 nm. Compared to the other prepared electrodes, the 0.04 M Nd-doped BaWO4 product exhibited low overpotential values of 330 mV and 450 mV to deliver current densities of 10 mA/cm2 and 50 mA/cm2, respectively. In addition, the optimized electrode achieved a small Tafel slope value of 158 mV dec-1 and followed the Volmer-Heyrovsky mechanism. Moreover, the electrical conductivity of BaWO4 was tuned due to the addition of a rare-earth metal dopant, and it exhibited the charge-transfer resistance and solution resistance values of 0.98 and 1.01 Ω, respectively. The prepared electrocatalyst was further studied by using cyclic voltammetry, and it exhibited a high double-layer capacitance value of 29.3 mF/cm2 and high electrochemically active surface areas of 1.465 cm2. The electrochemical performance was greatly improved depending on the concentration of the doping agent, and it was well consistent with the obtained results. The best electrocatalyst was subjected to a chronoamperometry test, which exhibited excellent stability even after 20 h. Hence, this work suggests that alkaline metal tungstates have a cost-effective, efficient, and promising electrocatalyst, and it is a new approach for the water oxidation process.