Supramolecular interactions in salts/cocrystals involving pyrimidine derivatives of sulfonate/carboxylic acid

Acta Crystallogr C Struct Chem. 2023 Feb 1;79(Pt 2):61-67. doi: 10.1107/S2053229623000177. Epub 2023 Jan 23.

Abstract

The crystal structures of three compounds involving aminopyrimidine derivatives are reported, namely, 5-fluorocytosinium sulfanilate-5-fluorocytosine-4-azaniumylbenzene-1-sulfonate (1/1/1), C4H5FN3O+·C6H6NO3S-·C4H4FN3O·C6H7NO3S, I, 5-fluorocytosine-indole-3-propionic acid (1/1), C4H4FN3O·C11H11NO2, II, and 2,4,6-triaminopyrimidinium 3-nitrobenzoate, C4H8N5+·C7H4NO4-, III, which have been synthesized and characterized by single-crystal X-ray diffraction. In I, there are two 5-fluorocytosine (5FC) molecules (5FC-A and 5FC-B) in the asymmetric unit, with one of the protons disordered between them. 5FC-A and 5FC-B are linked by triple hydrogen bonds, generating two fused rings [two R22(8) ring motifs]. The 5FC-A molecules form a self-complementary base pair [R22(8) ring motif] via a pair of N-H...O hydrogen bonds and the 5FC-B molecules form a similar complementary base pair [R22(8) ring motif]. The combination of these two types of pairing generates a supramolecular ribbon. The 5FC molecules are further hydrogen bonded to the sulfanilate anions and sulfanilic acid molecules via N-H...O hydrogen bonds, generating R44(22) and R66(36) ring motifs. In cocrystal II, two types of base pairs (homosynthons) are observed via a pair of N-H...O/N-H...N hydrogen bonds, generating R22(8) ring motifs. The first type of base pair is formed by the interaction of an N-H group and the carbonyl O atom of 5FC molecules through a couple of N-H...O hydrogen bonds. Another type of base pair is formed via the amino group and a pyrimidine ring N atom of the 5FC molecules through a pair of N-H...N hydrogen bonds. The base pairs (via N-H...N hydrogen bonds) are further bridged by the carboxyl OH group of indole-3-propionic acid and the O atom of 5FC through O-H...O hydrogen bonds on either side of the R22(8) motif. This leads to a DDAA array. In salt III, one of the N atoms of the pyrimidine ring is protonated and interacts with the carboxylate group of the anion through N-H...O hydrogen bonds, leading to the primary ring motif R22(8). Furthermore, the 2,4,6-triaminopyrimidinium (TAP) cations form base pairs [R22(8) homosynthon] via N-H...N hydrogen bonds. A carboxylate O atom of the 3-nitrobenzoate anion bridges two of the amino groups on either side of the paired TAP cations to form another ring [R32(8)]. This leads to the generation of a quadruple DADA array. The crystal structures are further stabilized by π-π stacking (I and III), C-H...π (I and II), C-F...π (I) and C-O...π (II) interactions.

Keywords: base pair; crystal structure; heterosynthon; homosynthon; hydrogen bonding; triple hydrogen bonds; zwitterion; π–π stacking.