Comparing bound entanglement of bell diagonal pairs of qutrits and ququarts

Sci Rep. 2023 Feb 4;13(1):2037. doi: 10.1038/s41598-023-29211-w.

Abstract

We compare the classification as entangled or separable of Bell diagonal bipartite qudits with positive partial transposition (PPT) and their properties for different dimensions. For dimension [Formula: see text], a form of entanglement exists that is hard to detect and called bound entanglement due to the fact that such entangled states cannot be used for entanglement distillation. Up to this date, no efficient solution is known to differentiate bound entangled from separable states. We address and compare this problem named separability problem for a family of bipartite Bell diagonal qudits with special algebraic and geometric structures and applications in quantum information processing tasks in different dimensions. Extending analytical and numerical methods and results for Bell diagonal qutrits ([Formula: see text]), we successfully classify more than [Formula: see text] of representative Bell diagonal PPT states for [Formula: see text]. Via those representative states we are able to estimate the volumes of separable and bound entangled states among PPT ququarts ([Formula: see text]). We find that at least [Formula: see text] of all PPT states are separable, [Formula: see text] bound entangled and for [Formula: see text] it remains unclear whether they are separable or bound entangled. Comparing the structure of bound entangled states and their detectors, we find considerable differences in the detection capabilities for different dimensions and relate those to differences of the Euclidean geometry for qutrits ([Formula: see text]) and ququarts ([Formula: see text]). Finally, using a detailed visual analysis of the set of separable and bound entangled Bell diagonal states in both dimensions, qualitative observations are made that allow to better distinguish bound entangled from separable states.