Research on blasting cumulative dynamic damage of surrounding rock in step construction tunnel

Sci Rep. 2023 Feb 3;13(1):1974. doi: 10.1038/s41598-023-28900-w.

Abstract

In the process of cyclic blasting during tunnel excavation, the reserved surrounding rock sustains irreparable damage accumulation. For safe tunnel construction, it is imperative to understand the characteristics of blasting dynamic cumulative rock damage. Sonic wave test and numerical simulation methods were applied to the research. The JH-2 model was adopted as the damage model of surrounding rock. Based on the data transfer method between solvers in ABAQUS software, the cumulative damage was calculated. The damage characteristics were obtained by combining the sonic wave test results. According to the research findings, the entire reserved surrounding rock has periodic damage characteristics. Each periodic damage area has a funnel shape along the tunnel's longitudinal direction, with a length of 160 cm, and 1.07 times the excavation footage. The latter excavation footage's blasting effect on the damaged area of the previous footage rock is 40 cm long, with three cumulative damage patterns. The three cumulative damage patterns more clearly reveal the surrounding rock's additional damage law, the degree of additional damage is greatest with the distance of 5-20 cm from the latter excavation footage. The research can provide appropriate theoretical guidance for the design of the step-blasting construction tunnel's blasting scheme and lining.