Precise Control of Dissipative Self-assembly by Light and Electricity

Chemistry. 2023 May 11;29(27):e202300347. doi: 10.1002/chem.202300347. Epub 2023 Mar 27.

Abstract

Nature-inspired synthetic dissipative self-assemblies have attracted much attention recently. However, it remains a major challenge to achieve precise control over dissipative supramolecular assembly structures and functions of self-contained systems. Here we combine light and electricity as two clean, and spatiotemporally addressable fuels to provide precise control over the morphology for dissipative self-assembly of a perylene bisimide glycine (PBIg) building block in a self-contained solution. In this design, electrochemical oxidation provides the positive fuel to activate PBIg self-assembly while photoreduction supplies the negative fuel to deactivate the system for disassembly. Through programming the two counteracting fuels, we demonstrated the control of PBIg self-assembly into a variety of assembly morphologies in a self-contained system. In addition, by exerting light and electrical dual fuels simultaneously, we could create an active homeostasis exhibiting dynamic instability, leading to morphological change to asymmetric assemblies with curvatures. Such precise control over self-assembly of self-contained systems may find future applications in programming complex active materials as well as formulating pharmaceutical reagents with desired morphologies.

Keywords: dissipative self-assembly; electrochemical oxidation; out-of-equilibrium; perylene bisimide; photoreduction.