Multi-site phosphorylation of yeast Mif2/CENP-C promotes inner kinetochore assembly

Curr Biol. 2023 Feb 27;33(4):688-696.e6. doi: 10.1016/j.cub.2023.01.012. Epub 2023 Feb 2.

Abstract

Kinetochores control eukaryotic chromosome segregation by connecting chromosomal centromeres to spindle microtubules. Duplication of centromeric DNA necessitates kinetochore disassembly and subsequent reassembly on nascent sisters. To search for a regulatory mechanism that controls the earliest steps of this process, we studied Mif2/CENP-C, an essential basal component of the kinetochore. We found that phosphorylation of a central region of Mif2 (Mif2-PEST) enhances inner kinetochore assembly. Eliminating Mif2-PEST phosphorylation sites progressively impairs cellular fitness. The most severe Mif2-PEST mutations are lethal in cells lacking otherwise non-essential inner kinetochore factors. These data show that multi-site phosphorylation of Mif2/CENP-C controls inner kinetochore assembly.

Keywords: cell cycle; centromere; chromosome segregation; kinase; kinetochore; mitosis; phosphorylation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Centromere / metabolism
  • Centromere Protein A / metabolism
  • Chromosomal Proteins, Non-Histone / metabolism
  • DNA-Binding Proteins / genetics
  • Kinetochores* / metabolism
  • Mitosis
  • Phosphorylation
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / metabolism
  • Saccharomyces cerevisiae Proteins* / genetics
  • Saccharomyces cerevisiae Proteins* / metabolism

Substances

  • centromere protein C
  • Chromosomal Proteins, Non-Histone
  • Centromere Protein A
  • MIF2 protein, S cerevisiae
  • DNA-Binding Proteins
  • Saccharomyces cerevisiae Proteins