Sustainable agricultural use of sewage sludge: impacts of high Zn concentration on on Folsomia candida, Enchytraeus crypticus, Lactuca sativa, and Phaseolus vulgaris

Environ Monit Assess. 2023 Feb 3;195(3):359. doi: 10.1007/s10661-023-10969-5.

Abstract

Zinc (Zn) is an essential micronutrient for plants and an important component for maintaining soil quality. Commonly found in the soil due to anthropogenic activities, such as industrialization and application of organic waste as fertilizers, in high concentrations, Zn may induce soil toxicity, affecting important communities, such as edaphic fauna. Despite its high concentrations found in the environment, Zn bioavailability can be affected by the type of soil, organic matter content and pH. In this work, Zn had its toxicity evaluated in a natural tropical soil, sampled in São Paulo-Brazil, for two soil invertebrates (Folsomia candida, Enchytraeus crypticus) and two seeds (Lactuca sativa and Phaseolus vulgaris), through ecotoxicological tests. The invertebrate E. crypticus was exposed to Zn concentrations of 10.0 (T1); 100.0 (T2); 150.0 (T3); 200.0 (T4); 400.0 (T5) mg Zn kg-1 of dry soil, while F. candida, L. sativa and P. vulgaris were exposed to Zn concentrations of 100.0; 200.0; 400.0; 800.0 (t6); 1600.0 (t7); and 2000.0 (t8) mg Zn kg-1 of dry soil. The outcome evaluated were seed germination, for L. sativa and P. vulgaris, and reproduction, for F. candida and E. crypticus. The EC50 obtained for E. crypticus, F. candida, L. sativa, and P. vulgaris were 261.5, 1089.7, 898.5, and 954.5 mg Zn kg-1 of dry soil, respectively, being E. crypticus the most sensitive organism, and only at the highest Zn's concentrations the organisms' reproduction and seeds' germination showed a statistically significant inhibitory effect (p < 0.05). Therefore, this work's results showed that Zn does not present significant toxicity for the tested soil organisms and seeds and that at 100 mg Zn kg-1 of dry soil it can be beneficial to F. candida and E. crypticus' reproduction and L. sativa's germination. These results imply that the presence of Zn in low concentrations, both in soil and biofertilizers, such as sewage sludge, not only is not a concern, but it can even benefit certain crops and functions of edaphic organisms, which may contribute to the engagement of sustainable agricultural practices and the quest for food security.

Keywords: Bioassays; Bioindicator; Edaphic organisms; Metal contamination; Phytotoxicity.

MeSH terms

  • Animals
  • Arthropods*
  • Brazil
  • Coleoptera*
  • Environmental Monitoring
  • Lactuca
  • Oligochaeta*
  • Phaseolus*
  • Sewage
  • Soil / chemistry
  • Soil Pollutants* / analysis
  • Zinc

Substances

  • Sewage
  • Zinc
  • Soil
  • Soil Pollutants