Exploring a new approach for assessing the fate and behavior of the tailings released by the Brumadinho dam collapse (Minas Gerais, Brazil)

J Hazard Mater. 2023 Apr 15:448:130828. doi: 10.1016/j.jhazmat.2023.130828. Epub 2023 Jan 18.

Abstract

In 2019, the Brumadinho dam rupture released a massive amount of iron ore mining tailings into the Paraopeba River. Up to now, it remains a public health issue for the local and downstream populations. The present study aims to assess the behavior and fate of metal contamination following the disaster. Using new sampling strategies and up-to-date geochemistry tools, we show that the dissolved metal concentrations (< 0.22 µm cutoff filtration) remained low in the Paraopeba River. Although the tailings present high metal concentrations (Fe, Mn, Cd, and As), the high local background contents of metals and other previous anthropogenic contamination hamper tracing the sediment source based only on the geochemical signature. The Pb isotopic composition coupled with the metals enrichment factor of sediments and Suspended Particulate Matter (SPM) constitutes accurate proxies that trace the fate and dispersion of tailing particles downstream of the dam collapse. This approach shows that 1) The influence of the released tailing was restricted to the Paraopeba River and the Retiro Baixo reservoir, located upstream of the São Francisco River; 2) The tailings' contribution to particulate load ranged from 17 % to 88 % in the Paraopeba River; 3) Other regional anthropogenic activities also contribute to water and sediment contamination of the Paraopeba river.

Keywords: Brumadinho dam disaster; Environmental geochemistry; Metal contamination; Metal dynamics; Mine tailings; Paraopeba River; Pb isotopes.