Electrical Stimulation and Muscle Strength Gains in Healthy Adults: A Systematic Review

J Strength Cond Res. 2023 Apr 1;37(4):938-950. doi: 10.1519/JSC.0000000000004359. Epub 2022 Oct 18.

Abstract

Mukherjee, S, Fok, JR, and van Mechelen, W. Electrical stimulation and muscle strength gains in healthy adults: A systematic review. J Strength Cond Res 37(4): 938-950, 2023-Electrical muscle stimulation (EMS) is a popular method for strength gains among athletes and fitness enthusiasts. This review investigated the literature from 2008 to 2020 on EMS application protocols, strength adaptations, neural adaptations, and its use as an independent and combined training tool for strength gain in healthy adults. The investigation was modeled after the 2020 PRISMA guidelines. The eligibility criteria included studies that assessed the effect of EMS, either alone or in combination with voluntary resistance training (VRT) in healthy adult populations, involving a control group performing either usual or sham training, with at least 1 performance outcome measure assessed during experimental randomized controlled trials (RCTs), cluster RCT, randomized crossover trials, or nonrandomized studies. Ten studies met the eligibility criteria with a total of 174 subjects. Eight studies investigated the effect of EMS on lower limb muscles and 2 on elbow flexors. Five studies used concurrent VRT. Studies were heterogenous in methods, subject characteristics, intervention, and EMS protocols. All 10 studies reported significant strength gains as an outcome of EMS treatment, but there were no improvements in strength-related functional outcome measures. The optimal threshold for treatment duration, EMS intensity, pulse, and frequency could not be determined due to methodological differences and EMS application protocol inconsistency between studies. Protocol variations also existed between the studies that combined EMS with VRT. Standardized protocols are needed for electrode placement location, motor point identification, positioning of the body part being investigated, impulse type, intensity, and duration of stimulus.

Publication types

  • Systematic Review

MeSH terms

  • Adult
  • Electric Stimulation / methods
  • Exercise
  • Humans
  • Muscle Strength / physiology
  • Muscle, Skeletal* / physiology
  • Resistance Training* / methods