Accurate Diagnosis of Cortical and Infratentorial Lesions in Multiple Sclerosis Using Accelerated Fluid and White Matter Suppression Imaging

Invest Radiol. 2023 May 1;58(5):337-345. doi: 10.1097/RLI.0000000000000939. Epub 2022 Nov 10.

Abstract

Objectives: The precise location of multiple sclerosis (MS) cortical lesions can be very challenging at 3 T, yet distinguishing them from subcortical lesions is essential for the diagnosis and prognosis of the disease. Compressed sensing-accelerated fluid and white matter suppression imaging (CS-FLAWS) is a new magnetic resonance imaging sequence derived from magnetization-prepared 2 rapid acquisition gradient echo with promising features for the detection and classification of MS lesions. The objective of this study was to compare the diagnostic performances of CS-FLAWS (evaluated imaging) and phase sensitive inversion recovery (PSIR; reference imaging) for classification of cortical lesions (primary objective) and infratentorial lesions (secondary objective) in MS, in combination with 3-dimensional (3D) double inversion recovery (DIR).

Materials and methods: Prospective 3 T scans (MS first diagnosis or follow-up) acquired between March and August 2021 were retrospectively analyzed. All underwent 3D CS-FLAWS, axial 2D PSIR, and 3D DIR. Double-blinded reading sessions exclusively in axial plane and final consensual reading were performed to assess the number of cortical and infratentorial lesions. Wilcoxon test was used to compare the 2 imaging datasets (FLAWS + DIR and PSIR + DIR), and intraobserver and interobserver agreement was assessed using the intraclass correlation coefficient.

Results: Forty-two patients were analyzed (38 with relapsing-remitting MS, 29 women, 42.7 ± 12.6 years old). Compressed sensing-accelerated FLAWS allowed the identification of 263 cortical lesions versus 251 with PSIR ( P = 0.74) and 123 infratentorial lesions versus 109 with PSIR ( P = 0.63), corresponding to a nonsignificant difference between the 2 sequences. Compressed sensing-accelerated FLAWS exhibited fewer false-negative findings than PSIR either for cortical lesions (1 vs 13; P < 0.01) or infratentorial lesions (1 vs 15; P < 0.01). No false-positive findings were found with any of the 2 sequences. Diagnostic confidence was high for each contrast.

Conclusion: Three-dimensional CS-FLAWS is as accurate as 2D PSIR imaging for classification of cortical and infratentorial MS lesions, with fewer false-negative findings, opening the way to a reliable full brain MS exploration in a clinically acceptable duration (5 minutes 15 seconds).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Brain / pathology
  • Female
  • Humans
  • Magnetic Resonance Imaging / methods
  • Middle Aged
  • Multiple Sclerosis* / diagnostic imaging
  • Multiple Sclerosis* / pathology
  • Prospective Studies
  • Retrospective Studies
  • White Matter* / diagnostic imaging
  • White Matter* / pathology