A transimpedance preamplifier using a feedforward approach for robust rejection of DC photogenerated currents

Rev Sci Instrum. 2023 Jan 1;94(1):014705. doi: 10.1063/5.0130239.

Abstract

The preamplifier proposed in this paper is designed to extract weak variable photogenerated signals from a high-level continuous background ensuring low noise and high transimpedance gain. An efficient cancellation of the DC component directly at the photodetector output, exploiting a feedforward approach, allows us to properly amplify the variable signal components of interest avoiding saturation of the preamplifier. Furthermore, the large transimpedance gain allows for minimizing the effects of the noise introduced by the following stages on the signal processing chain. In the paper, we present the proposed approach and a possible circuit realization with a signal AC/DC ratio as small as 1/1000 ensuring low noise, high gain, and a considerable bandwidth. The realized preamplifier offers a Noise Equivalent Power NEP ≃ 1.12 nW, an in-band transimpedance gain of 4.4 MΩ, and a wide bandwidth from about 1 Hz up to 100 kHz, making it suitable for use in several applications both in biomedical and industrial fields.