High-resolution micro-cavity filling sensing by fiber optic interferometry

Rev Sci Instrum. 2023 Jan 1;94(1):015001. doi: 10.1063/5.0109751.

Abstract

In the last decade, new potential applications of micro- and nano-products in telecommunication, medical diagnostics, photovoltaic, and optoelectronic systems have increased the interest to develop micro-engineering technologies. Injection molding of polymeric materials is a recent method being adapted for serial manufacturing of optic components and packaging at the micro- and nano-scale. Quality assurance of replication into small cavities is an important but underdeveloped factor that is needed to ensure high production efficiency in any micro-fabrication industry. In this work, we introduce a fiber-based interferometric measurement sensor to monitor the cavity filling of optical microstructures fabricated into a macroscopic molding die. The interferometer was capable of resolving melt front motion into the microcavity to the point of complete filling as verified by atomic force microscopy. Despite the low reflectivity of the transparent polymer and unoptimized reflected light collection optics, this system is capable of monitoring polymer movement during the course of filling and detecting the completion of the process. The simplicity and flexibility of the technology could allow eventual instrumentation of injection molds, embossing, and nanoimprint tooling suitably modified with a small optical window to accommodate light from an optical fiber. This would provide a solution to the challenging problem of monitoring local, nanometer scale filling processes.