Identification of a Novel Keto Sugar Component in Streptococcus pneumoniae Serotype 12F Capsular Polysaccharide and Impact on Vaccine Immunogenicity

J Immunol. 2023 Mar 15;210(6):764-773. doi: 10.4049/jimmunol.2100849.

Abstract

Implementation of conjugate vaccine technology revolutionized the ability to effectively elicit long-lasting immune responses to bacterial capsular polysaccharides. Although expansion of conjugate vaccine serotype coverage is designed to target residual disease burden to pneumococcal serotypes not contained in earlier vaccine versions, details of polysaccharide Ag structure, heterogeneity, and epitope structure components contributing to vaccine-mediated immunity are not always clear. Analysis of Streptococcus pneumoniae serotype 12F polysaccharide by two-dimensional nuclear magnetic resonance spectroscopy and mass spectrometry revealed a partial substitution of N-acetyl-galactosamine by the keto sugar 2-acetamido-2,6-dideoxy-xylo-hexos-4-ulose (Sug) in up to 25% of the repeat units. This substitution was not described in previous published structures for 12F. Screening a series of contemporary 12F strains isolated from humans (n = 17) identified Sug incorporation at varying levels in all strains examined. Thus, partial Sug substitution in S. pneumoniae serotype 12F may have always been present but is now detectable by state-of-the-art analytical techniques. During the steps of conjugation, the serotype 12F Sug epitope is modified by reduction, and both polysaccharide PPSV23 and conjugate PCV20 vaccines contain 12F Ags with little to no Sug epitope. Both PCV20 and PPSV23 vaccines were evaluated for protection against circulating 12F strains with varying amounts of Sug in their repeat unit based on an opsonophagocytic killing assay involving HL-60 cells and rabbit complement. Both vaccines elicited human-derived neutralizing Abs against serotype 12F, independent of Sug level between ∼2 and 25 mol%. These findings suggest that the newly identified serotype 12F Sug epitope is likely not an essential epitope for vaccine-elicited protection.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Humans
  • Immunogenicity, Vaccine*
  • Magnetic Resonance Spectroscopy
  • Serogroup
  • Streptococcus pneumoniae*
  • Vaccines, Conjugate

Substances

  • Vaccines, Conjugate