Additive-Enhanced Crystallization of Inorganic Perovskite Single Crystals for High-Sensitivity X-Ray Detection

Small. 2023 May;19(18):e2207588. doi: 10.1002/smll.202207588. Epub 2023 Jan 31.

Abstract

Inorganic cesium lead halide perovskite single crystals are particularly intriguing to ionizing radiation detection by virtue of their material stability and high attenuation coefficients. However, the growth of high-quality inorganic perovskite single crystals remains challenging, mainly due to the limited solubility. In this work, an additive-enhanced crystallization method is proposed for cesium lead perovskites. The additive can remarkably increase the solubility of cesium bromide in dimethyl sulfoxide (DMSO) forming a balanced stoichiometric precursor solution, which prevents the formation of impurity phases. In addition, the additives would react with DMSO generating glyoxylic acid (GLA) via nucleophilic substitution and Kornblum oxidation reactions. The GLA can form stable PbBr2 -DMSO-GLA complexes, which enables better crystallinity, uniformity and much longer carrier lifetimes for the grown single crystals. The X-ray detectors using the additive-enhanced crystals exhibit an ultra-high sensitivity of 3.0 × 104 µC Gyair -1 cm-2 which is more than two orders of magnitude higher than that for the control devices.

Keywords: CsPbBr 3 single crystals; Kornblum oxidation reaction; X-ray detectors; additive; crystal growth.