Increasing Complexity of the N-Glycome During Caenorhabditis Development

Mol Cell Proteomics. 2023 Mar;22(3):100505. doi: 10.1016/j.mcpro.2023.100505. Epub 2023 Jan 28.

Abstract

Caenorhabditis elegans is a frequently employed genetic model organism and has been the object of a wide range of developmental, genetic, proteomic, and glycomic studies. Here, using an off-line MALDI-TOF-MS approach, we have analyzed the N-glycans of mixed embryos and liquid- or plate-grown L4 larvae. Of the over 200 different annotatable N-glycan structures, variations between the stages as well as the mode of cultivation were observed. While the embryonal N-glycome appears less complicated overall, the liquid- and plate-grown larvae differ especially in terms of methylation of bisecting fucose, α-galactosylation of mannose, and di-β-galactosylation of core α1,6-fucose. Furthermore, we analyzed the O-glycans by LC-electrospray ionization-MS following β-elimination; especially the embryonal O-glycomes included a set of phosphorylcholine-modified structures, previously not shown to exist in nematodes. However, the set of glycan structures cannot be clearly correlated with levels of glycosyltransferase transcripts in developmental RNA-Seq datasets, but there is an indication for coordinated expression of clusters of potential glycosylation-relevant genes. Thus, there are still questions to be answered in terms of how and why a simple nematode synthesizes such a diverse glycome.

Keywords: fucose; galactose; glycomics; mass spectrometry; phosphorylcholine.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Caenorhabditis elegans / metabolism
  • Caenorhabditis* / metabolism
  • Chromatography, High Pressure Liquid
  • Fucose / metabolism
  • Glycomics
  • Polysaccharides / metabolism
  • Proteomics
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization

Substances

  • Fucose
  • Polysaccharides