Potential disintegration and transport of biochar in the soil-water environment: A case study towards purple soil

Environ Res. 2023 Apr 1:222:115383. doi: 10.1016/j.envres.2023.115383. Epub 2023 Jan 28.

Abstract

Biochar has been widely applied in soil and water. However, the fate and transport of biochar are not yet fully understood. Here, biochar's disintegration, transport, and the effect of temperature on biochar transport in soil (purple soil)-water systems were investigated. The results showed that the potentially transportable components (PTC) of biochar for corn straw, wheat straw, rice straw, rice husk and wood biochar reached 6.22-7.60%, 5.96-12.29%, 11.77-12.45%, 5.34-6.26% and 5.08-6.14% by mass, respectively. An external force (ultrasound exposure) intensified the physical disintegration, including colloidal and nanoparticles from larger particles, thereby increasing the transport potential. The mass recovery rates of PTC for rice straw biochar after penetrating through soil at 5, 20 and 35 °C reached 44.25%, 32.97% and 10.98%, respectively, which was supported by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory results. Elevated temperatures increased the hydrodynamic average diameter of PTC, and the Zeta potential of PTC and soil at 35 °C were less negative than those at 5 and 20 °C. As a result, biochar's transportability decreases with increasing temperature in the soil-water system, during which the enhanced PTC aggregation and the decreased electrostatic repulsion between biochar and soil particles played a crucial role. The increase in electrical conductivity in the soil-water system may be the main reason for the decrease in electrostatic repulsion at higher temperatures. The findings are helpful for an in-depth understanding of the environmental fate and managing the transport risk of biochar.

Keywords: Aggregation; Environmental risk; Migration; Nanoparticles; Stability.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Charcoal
  • Oryza*
  • Soil*
  • Temperature
  • Water

Substances

  • Soil
  • biochar
  • Water
  • Charcoal