Automatic Image Processing to Determine the Community Size Structure of Riverine Macroinvertebrates

J Vis Exp. 2023 Jan 13:(191). doi: 10.3791/64320.

Abstract

Body size is an important functional trait that can be used as a bioindicator to assess the impacts of perturbations in natural communities. Community size structure responds to biotic and abiotic gradients, including anthropogenic perturbations across taxa and ecosystems. However, the manual measurement of small-bodied organisms such as benthic macroinvertebrates (e.g., >500 µm to a few centimeters long) is time-consuming. To expedite the estimation of community size structure, here, we developed a protocol to semi-automatically measure the individual body size of preserved river macroinvertebrates, which are one of the most commonly used bioindicators for assessing the ecological status of freshwater ecosystems. This protocol is adapted from an existing methodology developed to scan marine mesozooplankton with a scanning system designed for water samples. The protocol consists of three main steps: (1) scanning subsamples (fine and coarse sample size fractions) of river macroinvertebrates and processing the digitized images to individualize each detected object in each image; (2) creating, evaluating, and validating a learning set through artificial intelligence to semi-automatically separate the individual images of macroinvertebrates from detritus and artifacts in the scanned samples; and (3) depicting the size structure of the macroinvertebrate communities. In addition to the protocol, this work includes the calibration results and enumerates several challenges and recommendations to adapt the procedure to macroinvertebrate samples and to consider for further improvements. Overall, the results support the use of the presented scanning system for the automatic body size measurement of river macroinvertebrates and suggest that the depiction of their size spectrum is a valuable tool for the rapid bioassessment of freshwater ecosystems.

Publication types

  • Video-Audio Media
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Artificial Intelligence
  • Ecosystem*
  • Environmental Monitoring / methods
  • Fresh Water
  • Invertebrates*
  • Rivers