Perfect Core-Shell Octahedral B@B38 + , Be@B38 , and Zn@B38 with an Octa-Coordinate Center as Superatoms Following the Octet Rule

Chemphyschem. 2023 May 2;24(9):e202200947. doi: 10.1002/cphc.202200947. Epub 2023 Feb 13.

Abstract

Planar, tubular, cage-like, and bilayer boron clusters Bn +/0/- (n=3∼48) have been observed in joint experimental and theoretical investigations in the past two decades. Based on extensive global searches augmented with first-principles theory calculations, we predict herein the smallest perfect core-shell octahedral borospherene Oh B@B38 + (1) and its endohedral metallo-borospherene analogs Oh Be@B38 (2), and Oh Zn@B38 (3) which, with an octa-coordinate B, Be or Zn atom located exactly at the center, turn out to be the well-defined global minima of the systems highly stable both thermodynamically and dynamically. B@B38 + (1) represents the first boron-containing molecule reported to date which contains an octa-coordinate B center covalently coordinated by eight face-capping boron atoms at the corners of a perfect cube in the first coordination sphere. Detailed natural bonding orbital (NBO) and adaptive natural density partitioning (AdNDP) bonding analyses indicate that these high-symmetry core-shell complexes X@B38 +/0/- (X=B, Be, Zn) as super-noble gas atoms follow the octet rule in coordination bonding patterns (1S2 1P6 ), with one delocalized 9c-2e S-type coordination bond and three delocalized 39c-2e P-type coordination bonds formed between the octa-coordinate X center and its octahedral Oh B38 ligand to effectively stabilize the systems. Their IR, Raman, and UV-Vis spectra are computationally simulated to facilitate their spectroscopic characterizations.

Keywords: bonding; boron nanoclusters; density functional theory; octet rule; superatoms.