Long-term stability of over-the-counter cuffless blood pressure monitors: a proposal

Health Technol (Berl). 2023;13(1):53-63. doi: 10.1007/s12553-023-00726-6. Epub 2023 Jan 23.

Abstract

Blood pressure is an important cardiovascular parameter. Currently, the cuff-based sphygmomanometer is a popular, reliable, measurement method, but blood pressure monitors without cuffs have become popular and are now available without a prescription. Blood pressure monitors must be approved by regulatory authorities. Current cuffless blood pressure (CL-BP) monitors are not suitable for at-home management and prevention of hypertension. This paper proposes simple criteria for over-the-counter CL-BP monitoring. First, the history of the sphygmomanometer and current standard blood pressure protocol are reviewed. The main components of CL-BP monitoring are accuracy during the resting condition, accuracy during dynamic blood pressure changes, and long-term stability. In this proposal we recommend intermittent measurement to ensure that active measurement accuracy mirrors resting condition accuracy. A new experimental protocol is proposed to maintain long-term stability. A medically approved automated sphygmomanometer was used as the standard device in this study. The long-term accuracy of the test device is based on the definition of propagation error, i.e., for an oscillometric automated sphygmomanometer (5 ± 8 mmHg) ± the error for the test device static accuracy (-0.12 ± 5.49 mmHg for systolic blood pressure and - 1.17 ± 5.06 mmHg for diastolic blood pressure). Thus, the long-term stabilities were - 3.38 ± 7.1 mmHg and - 1.38 ± 5.4 mmHg, which satisfied propagation error. Further research and discussion are necessary to create standards for use by manufacturers; such standards should be readily evaluated and ensure high-quality evidence.

Supplementary information: The online version contains supplementary material available at 10.1007/s12553-023-00726-6.

Keywords: Auscultation sphygmomanometer; Cuffless blood pressure; Long-term stability; Oscillometric sphygmomanometer; Regulation.

Publication types

  • Review