Surgical planning, histopathology findings and postoperative outcome in MR-negative extra-temporal epilepsy using intracranial EEG, functional imaging, magnetoencephalography, neuronavigation and intraoperative MRI

Clin Neurol Neurosurg. 2023 Mar:226:107603. doi: 10.1016/j.clineuro.2023.107603. Epub 2023 Jan 18.

Abstract

Objective: MRI-negative drug-resistant epilepsy presents a challenge when it comes to surgical planning, and surgical outcome is worse than in cases with an identified lesion. Although increasing implementation of more powerful MRI scanners and artificial intelligence has led to the detection of previously unrecognizable lesions, in some cases even postoperative pathological evaluation of electrographically epileptogenic zones shows no structural alterations. While in temporal lobe epilepsy a standardized resection approach can usually be performed, the surgical management of extra-temporal lesions is always individual. Here we present a strategy for treating patients with extra-temporal MRI-negative epilepsy focus and report our histological findings and patient outcome.

Methods: Patients undergoing epilepsy surgery in the Department of Neurosurgery at the University Hospital Erlangen between 2012 and 2020 were included in the study. Inclusion criteria were: (1) failure to identify a structural lesion on preoperative high-resolution 3 Tesla MRI with a standardized epilepsy protocol and (2) preoperative intracranial EEG (iEEG) diagnostics.

Results: We identified 8 patients corresponding to the inclusion criteria. Second look MRI analysis by an experienced neuroradiologist including the most recent analysis algorithm utilized in our clinic revealed a possible lesion in two patients. One of the patients with a clear focal cortical dysplasia (FCD) finding on a second look was excluded from further analysis. Of the other 7 patients, in one patient iEEG was performed with subdural electrodes, whereas the other 6 were evaluated with depth electrodes. MEG was performed preoperatively in all but one patient. An MEG focus was implemented in resection planning in 3 patients. FDG PET was performed in all, but only implemented in one patient. Histopathological evaluation revealed one non-lesional case, 4 cases of FCD and 2 cases with mild developmental malformation. All patients were free from permanent neurological deficits and presented with Engel 1A or 1B outcome on the last follow-up.

Conclusion: We demonstrate that extra-temporal MRI-negative epilepsy can be treated successfully provided an extensive preoperative planning is performed. The most important diagnostic was stereo-EEG, whereas additional data from MEG was helpful and FDG PET was rarely useful in our cohort.

Keywords: Intracranial EEG; Intraoperative MRI; MRI-negative epilepsy; Magnetoencephalography; Neuronavigation.

MeSH terms

  • Artificial Intelligence
  • Electrocorticography / methods
  • Electroencephalography / methods
  • Epilepsy* / surgery
  • Fluorodeoxyglucose F18
  • Humans
  • Magnetic Resonance Imaging / methods
  • Magnetoencephalography* / methods
  • Neuronavigation / methods
  • Retrospective Studies
  • Treatment Outcome

Substances

  • Fluorodeoxyglucose F18