Twist-Dependent Intra- and Interlayer Excitons in Moiré MoSe_{2} Homobilayers

Phys Rev Lett. 2023 Jan 13;130(2):026901. doi: 10.1103/PhysRevLett.130.026901.

Abstract

Optoelectronic properties of van der Waals homostructures can be selectively engineered by the relative twist angle between layers. Here, we study the twist-dependent moiré coupling in MoSe_{2} homobilayers. For small angles, we find a pronounced redshift of the K-K and Γ-K excitons accompanied by a transition from K-K to Γ-K emission. Both effects can be traced back to the underlying moiré pattern in the MoSe_{2} homobilayers, as confirmed by our low-energy continuum model for different moiré excitons. We identify two distinct intralayer moiré excitons for R stacking, while H stacking yields two degenerate intralayer excitons due to inversion symmetry. In both cases, bright interlayer excitons are found at higher energies. The performed calculations are in excellent agreement with experiment and allow us to characterize the observed exciton resonances, providing insight about the layer composition and relevant stacking configuration of different moiré exciton species.