Microstructural Pattern Formation during Far-from-Equilibrium Alloy Solidification

Phys Rev Lett. 2023 Jan 13;130(2):026203. doi: 10.1103/PhysRevLett.130.026203.

Abstract

We introduce a new phase-field formulation of rapid alloy solidification that quantitatively incorporates nonequilibrium effects at the solid-liquid interface over a very wide range of interface velocities. Simulations identify a new dynamical instability of dendrite tip growth driven by solute trapping at velocities approaching the absolute stability limit. They also reproduce the formation of the widely observed banded microstructures, revealing how this instability triggers transitions between dendritic and microsegregation-free solidification. Predicted band spacings agree quantitatively with observations in rapidly solidified Al-Cu thin films.