Solvent-Dependent Selective Synthesis of CF3-Tethered Indazole Derivatives Based on Multiple Bond Activations

Org Lett. 2023 Feb 10;25(5):720-725. doi: 10.1021/acs.orglett.2c04003. Epub 2023 Jan 27.

Abstract

Presented herein is a solvent-dependent selective synthesis of CF3-tethered indazole derivatives via the cascade reactions of 1-arylpyrazolidinones with trifluoromethyl ynones. Mechanistically, the formation of the title products involves cascade N-H/C-H/C-N/C-C bond cleavage along with pyrazole ring formation and pyrazolidinone ring opening. For the formation of a pyrazole scaffold, 1-phenylpyrazolidinone acts as a C2N2 synthon, while trifluoromethyl ynone serves as a C1 synthon. Meanwhile, trifluoromethyl ynone also acts as an enol unit to facilitate the ring opening of the pyrazolidinone ring and provide a trifluoropropenoxy fragment via cleavage of the alkynyl triple bond and migration of the cleaved moiety. When the reaction was run in trifluoroethanol instead of DCE, it selectively afforded indazole derivatives tethered with a trifluoroethoxy moiety through in situ transesterification. To our knowledge, this is the first synthesis of CF3-tethered indazole derivatives via concurrent alkynyl activation, pyrazole formation, and CF3 migration.