Porous Single Crystals at the Macroscale: From Growth to Application

Acc Chem Res. 2023 Feb 7;56(3):374-384. doi: 10.1021/acs.accounts.2c00777. Epub 2023 Jan 27.

Abstract

ConspectusPorous materials have wide applications in the fields of catalysis, separation, and energy conversion and storage. Porous materials contain pores that are specifically designed to achieve expectant performance. The solid phases in porous materials are normally completely continuous to form the basic porous frame while the pores are fluid phase within the solid phase. Single crystals are macroscopic materials in three spatial dimensions with the constituent atoms, ions, molecules, or molecular assemblies arranged in an orderly repeating pattern with the ordered structures. The growth of single crystals is indeed a process to arrange these constituents in three dimensions into a repeating pattern within the materials. Today the applications of single crystals are exponentially growing in wide fields, and single crystals are therefore unacknowledged as the pillars of our modern technology. Introducing porosity into single crystals would be expected to create a new kind of porous material in which the basic porous frames are single-crystalline and free of grain boundaries. The structural symmetry is completely maintained within the basic porous frames which are a continuous solid phase, but it is completely lost inside the pores. The porous architecture is free of grain boundaries, and the fully interconnected skeletons are in single-crystalline states within the basic porous frames. Single crystals with porosities can therefore be considered to be a new kind of porous material, but they are single-crystal-like because the structural symmetry is maintained only in the skeletons and completely lost within the pores. We therefore call them porous single crystals or consider them in porous single-crystalline states to stand out with their structural features. Porous single crystals at the macroscale combine the advantages of porous materials and single crystals to incorporate both porosity and structural coherence in a porous architecture, leading to invaluable opportunities to alter the material's properties by controlling the unique structural features to enhance its performance. However, the growth of single crystals in three dimensions reduces the formation of porosities, leading to a fundamental challenge for introducing porosity into single crystals in a traditional process of crystal growth. In this Account, we report the rational design, growth methodology, and microstructural engineering of porous single crystals in a solid-solid transformation. We rationally design a high-density mother phase in a single-crystalline state and transform it into a low-density new phase in a single-crystalline state to introduce porosities into single crystals even incorporating the removal of specific compositions from the mother phase during the growth of porous single crystals. The porosity can be tailored by controlling the change in relative densities from the mother phase to the porous single crystals while the pore size can be engineered by controlling the fabrication conditions. Considering the unique structural features, we explore their functionalities and applications in photoelectrochemical energy conversion, electrochemical alkane conversion, and electrochemical energy storage. We believe that the materials, if tailored into porous single-crystalline states, would not only find a broad range of applications in other fields but also enable a new path for material innovations.