Prediction and Characterization of Two-Dimensional Zn2VN3

J Phys Chem Lett. 2023 Feb 9;14(5):1148-1155. doi: 10.1021/acs.jpclett.2c03796. Epub 2023 Jan 27.

Abstract

A two-dimensional (2D) monolayer of a novel ternary nitride Zn2VN3 is computationally designed, and its dynamical and thermal stability is demonstrated. A synthesis strategy is proposed based on experimental works on production of ternary nitride thin films, calculations of formation and exfoliation energies, and ab initio molecular dynamics simulations. A comprehensive characterization of 2D Zn2VN3, including investigation of its optoelectronic and mechanical properties, is conducted. It is shown that 2D Zn2VN3 is a semiconductor with an indirect band gap of 2.75 eV and a high work function of 5.27 eV. Its light absorption covers visible and ultraviolet regions. The band gap of 2D Zn2VN3 is found to be well tunable by applied strain. At the same time 2D Zn2VN3 possesses high stability against mechanical loads, point defects, and environmental impacts. Considering the unique properties found for 2D Zn2VN3, it can be used for application in optoelectronic and straintronic nanodevices.