Reducing Carbonaceous Salts for Facile Fabrication of Monolayer Graphene

Small Methods. 2023 Mar;7(3):e2201596. doi: 10.1002/smtd.202201596. Epub 2023 Jan 26.

Abstract

Novel methods and mechanisms for graphene fabrication are of great importance in the development of materials science. Herein, a facile method to directly convert carbonaceous salts into high-quality freestanding graphene via a simple one-step redox reaction, is reported. The redox couple can be a combination of sodium borohydride (reductant) and sodium carbonate (oxidant), which can readily react with each other when evenly mixed/calcined and yield gram-scale, high-quality, contamination-free, micron-sized, freestanding graphene. More importantly, this method is applicable to a variety of input reductants and oxidants that are low cost and easily accessible. An in-depth investigation reveals that the carbonaceous oxidants can not only provide reduced carbon mass for graphene formation but also act as a self-template to guide the polymerization of carbon atoms following the pattern of the monolayer, six-carbon rings. In addition, the direct formation of graphene exhibits theoretically lower energy barriers than that of other allotropes such as fullerene and carbon nanotube. This facile, low-cost, scalable, and applicable method for mass production of high-quality graphene is expected to revolutionize graphene fabrication technology and boost its practical application to the industry level.

Keywords: carbonaceous salts; graphene preparation; redox reactions; self-template.