Nitrate dynamics and source apportionment on the East China Sea shelf revealed by nitrate stable isotopes and a Bayesian mixing model

Sci Total Environ. 2023 Apr 15:869:161762. doi: 10.1016/j.scitotenv.2023.161762. Epub 2023 Jan 23.

Abstract

The excess input of nitrate is one of the primary factors triggering nearshore eutrophication. To estimate the source apportionment of nitrate on the East China Sea (ECS) shelf, the nitrogen and oxygen stable isotopes in nitrate (δ15N-NO3- and δ18O-NO3-) collected in winter and late spring 2016 were analyzed alongside essential physical, chemical and biological parameters. The temporal and spatial distributions and characteristic values of nitrate-bearing water masses were presented. Accordingly, the end-member mixing model and Rayleigh model were applied to systematically analyze biogeochemical processes. The biogeochemical processes of nitrate were weak in winter, except in the southern ECS, where assimilation and nitrification probably occurred. In contrast, the biogeochemical processes were intensive in spring. The stable isotopic fractionations of N and O were unified in the whole area, and the ratio between δ18O-NO3- and δ15N-NO3- was 1.81 ± 0.04, which indicated significant assimilation accompanying nitrification in spring. Furthermore, a Bayesian stable isotope mixing model was used to reveal the source contributions of nitrate on the ECS shelf for the first time, demonstrating that the Changjiang Diluted Water and Kuroshio Subsurface Water were always sustained and provided steady nitrate sources for the whole ECS. The nitrate inputs from the Yellow Sea to the northern ECS increased from approximately 30 % in spring to nearly 70 % in winter, while that from the Taiwan Strait Warm Water to the southern ECS decreased from approximately 40 % in spring to zero in winter. Moreover, although the nitrate contributions from nitrification were significantly weak in the middle and northern ECS during winter, they were important over the entire ECS during spring. This study qualitatively and quantitatively improves the understanding of seasonal nitrate control from various sources, and these findings are important for nutrient management and policy making to mitigate nearshore eutrophication.

Keywords: East China Sea; Nitrate dynamics; Nitrate source apportionment; Nitrate stable isotopes; SIAR.