Superhydrophobic and Conductive Foams with Antifouling and Oil-Water Separation Properties

ACS Appl Mater Interfaces. 2023 Feb 8;15(5):7610-7626. doi: 10.1021/acsami.2c22180. Epub 2023 Jan 26.

Abstract

Hybrid organic-inorganic materials are attracting enormous interest in materials science due to the combination of multiple advantageous properties of both organic and inorganic components. Taking advantage of a simple, scalable, solvent-free hard-sacrificial method, we report the successful fabrication of three-dimensional hybrid porous foams by integrating two types of fillers into a poly(dimethylsiloxane) (PDMS) framework. These fillers consist of hydrophobic electrically conductive graphene (GR) nanoplatelets and hydrophobic bactericidal copper (Cu) microparticles. The fillers were utilized to create the hierarchical rough structure with low-surface-energy properties on the PDMS foam surfaces, leading to remarkable superhydrophobicity/superoleophilicity with contact angles of 158 and 0° for water and oil, respectively. The three-dimensional interconnected porous foam structures facilitated high oil adsorption capacity and excellent reusability as well as highly efficient oil/organic solvent-water separation in turbulent, corrosive, and saline environments. Moreover, the introduction of the fillers led to a significant improvement in the electrical conductivity and biofouling resistance (vs whole blood, fibrinogen, platelet cells, and Escherichia coli) of the foams. We envision that the developed composite strategy will pave a facile, scalable, and effective way for fabricating novel multifunctional hybrid materials with ideal properties that may find potential use in a broad range of biomedical, energy, and environmental applications.

Keywords: antifouling; conductivity; graphene; superhydrophobic; superoleophilic.