Direct observation of long-lived cyanide anions in superexcited states

Commun Chem. 2021 Feb 10;4(1):13. doi: 10.1038/s42004-021-00450-0.

Abstract

The cyanide anion (CN-) has been identified in cometary coma, interstellar medium, planetary atmosphere and circumstellar envelopes, but its origin and abundance are still disputed. An isolated CN- is stabilized in the vibrational states up to ν = 17 of the electronic ground-state 1Σ+, but it is not thought to survive in the electronic or vibrational states above the electron autodetachment threshold, namely, in superexcited states. Here we report the direct observation of long-lived CN- yields of the dissociative electron attachment to cyanogen bromide (BrCN), and confirm that some of the CN- yields are distributed in the superexcited vibrational states ν ≥ 18 (1Σ+) or the superexcited electronic states 3Σ+ and 3Π. The triplet state can be accessed directly in the impulsive dissociation of BrCN- or by an intersystem transition from the superexcited vibrational states of CN-. The exceptional stability of CN- in the superexcited states profoundly influences its abundance and is potentially related to the production of other compounds in interstellar space.