Multifunctional Iontronic Sensor Based on Liquid Metal-Filled Ho llow Ionogel Fibers in Detecting Pressure, Temperature, and Proximity

ACS Appl Mater Interfaces. 2023 Feb 8;15(5):7485-7495. doi: 10.1021/acsami.2c22835. Epub 2023 Jan 25.

Abstract

Fiber-based pressure/temperature sensors are highly desired in wearable electronics because of their natural advantages of good breathability and easy integrability. However, it is still a great challenge to fabricate reliable and highly sensitive fiber-based pressure/temperature sensors via a scalable and facile strategy. Herein, a novel fiber-based iontronic sensor with excellent pressure- and temperature-sensing capabilities is designed by assembling two crossed hollow and porous ionogel fibers filled with liquid metal. Serving as a pressure sensor, a high detection resolution (1.16 Pa), a high sensitivity of 13.30 kPa-1 (0-2 kPa), and a wide detection range (∼207 kPa) are realized owing to its novel hierarchical structure and the selection of deformable liquid electrodes. As a temperature sensor, it exhibits a high temperature sensitivity of 25.99% °C-1 (35-40 °C), high resolution of 0.02 °C, and good repeatability and reliability. On the basis of these excellent sensing capabilities, the as-prepared sensor can detect not only pressure signals varied from weak pulse to large joint movements but also the proximity of different objects. Furthermore, a large-area fiber array can be easily woven for acquiring the pressure mapping to intuitively distinguish the location, magnitude, and shape of the loaded object. This work provides a universal strategy to design fiber-shaped iontronic sensors for wearable electronics.

Keywords: fiber-based iontronic sensor; ionic liquid; liquid metal; porous structure; wearable electronics.