In Situ Reconstructed Mo-doped Amorphous FeOOH Boosts the Oxygen Evolution Reaction

Chem Asian J. 2023 Mar 14;18(6):e202201305. doi: 10.1002/asia.202201305. Epub 2023 Feb 1.

Abstract

Developing a fast and highly active oxygen evolution reaction (OER) catalyst to change energy kinetics technology is essential for making clean energy. Herein, we prepare three-dimensional (3D) hollow Mo-doped amorphous FeOOH (Mo-FeOOH) based on the precatalyst MoS2 /FeC2 O4 via in situ reconstruction strategy. Mo-FeOOH exhibits promising OER performance. Specifically, it has an overpotential of 285 mV and a durability of 15 h at 10 mA cm-2 . Characterizations indicate that Mo was included inside the FeOOH lattice, and it not only modifies the electronic energy levels of FeOOH but also effectively raises the inherent activity of FeOOH for OER. Additionally, in situ Raman analysis indicates that FeC2 O4 gradually transforms into the FeOOH active site throughout the OER process. This study provides ideas for designing in situ reconstruction strategies to prepare heteroatom doping catalysts for high electrochemical activity.

Keywords: amorphous; hydroxide; oxygen evolution reaction; reconstruction; transition metal oxides.