Influence of variability in the cyclooxygenase pathway on cardiovascular outcomes of nephrosclerosis patients

Sci Rep. 2023 Jan 23;13(1):1253. doi: 10.1038/s41598-022-27343-z.

Abstract

Nephrosclerosis patients are at an exceptionally high cardiovascular (CV) risk. We aimed to determine whether genetic variability represented by 38 tag-SNPs in genes of the cyclooxygenase pathway (PTGS1, PTGS2, PTGES, PTGES2 and PTGES3) leading to prostaglandin E2 (PGE2) synthesis, modified CV traits and events in 493 nephrosclerosis patients. Additionally, we genotyped 716 controls to identify nephrosclerosis risk associations. The addition of three variants, namely PTGS2 rs4648268, PTGES3 rs2958155 and PTGES3 rs11300958, to a predictive model for CV events containing classic risk factors in nephrosclerosis patients, significantly enhanced its statistical power (AUC value increased from 78.6 to 87.4%, p = 0.0003). Such increase remained significant after correcting for multiple testing. In addition, two tag-SNPs (rs11790782 and rs2241270) in PTGES were linked to higher systolic and diastolic pressure [carriers vs. non-carriers = 5.23 (1.87-9.93), p = 0.03 and 5.9 (1.87-9.93), p = 0.004]. PTGS1(COX1) rs10306194 was associated with higher common carotid intima media thickness (ccIMT) progression [OR 1.90 (1.07-3.36), p = 0.029], presence of carotid plaque [OR 1.79 (1.06-3.01), p = 0.026] and atherosclerosis severity (p = 0.041). These associations, however, did not survive Bonferroni correction of the data. Our findings highlight the importance of the route leading to PGE2 synthesis in the CV risk experienced by nephrosclerosis patients and add to the growing body of evidence pointing out the PGE2 synthesis/activity axis as a promising therapeutic target in this field.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carotid Intima-Media Thickness
  • Cyclooxygenase 2 / metabolism
  • Dinoprostone* / metabolism
  • Humans
  • Nephrosclerosis*
  • Prostaglandin-E Synthases
  • Risk Factors

Substances

  • Dinoprostone
  • Cyclooxygenase 2
  • Prostaglandin-E Synthases