Metal-Organic Frameworks for Photocatalytic Water Splitting and CO2 Reduction

Angew Chem Int Ed Engl. 2023 Apr 3;62(15):e202217565. doi: 10.1002/anie.202217565. Epub 2023 Feb 6.

Abstract

Photocatalytic water splitting and carbon dioxide (CO2 ) reduction provide promising solutions to global energy and environmental issues. In recent years, metal-organic frameworks (MOFs), a class of crystalline porous solids featuring well-defined and tailorable structures as well as high surface areas, have captured great interest toward photocatalytic water splitting and CO2 reduction. In this review, the semiconductor-like behavior of MOFs is first discussed. We then summarize the recent advances in photocatalytic water splitting and CO2 reduction over MOF-based materials and focus on the unique advantage of MOFs for clarifying the structure-property relationship in photocatalysis. In addition, some representative characterization techniques have been presented to unveil the photocatalytic kinetics and reaction intermediates in MOF-based systems. Finally, the challenges, and perspectives for future directions are proposed.

Keywords: Advanced Characterizations; CO2 Reduction; Metal-Organic Frameworks; Photocatalysis; Water Splitting.

Publication types

  • Review