Inhibition of Enveloped Virus Surrogate Phi6 Infection Using Yeast-Derived Vacuoles

Microbiol Spectr. 2023 Feb 14;11(1):e0266122. doi: 10.1128/spectrum.02661-22. Epub 2023 Jan 23.

Abstract

The periodic emergence of infectious disease poses a serious threat to human life. Among the causative agents, including pathogenic bacteria and fungi, enveloped viruses have caused global pandemics. In the last 10 years, outbreaks of severe acute respiratory syndrome coronavirus 2 disease, severe acute respiratory syndrome, and Middle East respiratory syndrome have all been caused by enveloped viruses. Among several paths of secondary transmission, inhalation of aerosols containing saliva with sputum droplets from infected patients is the major path. To prevent these infectious diseases, mass use of antiviral agents is essential. The yeast-derived vacuole is a small organelle in which hydrolytic enzymes are concentrated. It is an intracellular organ with an excellent ability to process old organelles and bacteria and viruses that have invaded from the outside and can be present in sufficient quantity to be called a kind of enzyme bomb. We confirmed the inhibition of virus infection and structural collapse by vacuole treatment. Among several enzymes, proteases affected Phi6 infectivity. This study tried to isolate these vacuoles from yeast and use them as an antiviral agent for virus treatment, which is a recent issue. We confirmed that viral infectivity was inactivated, and structure collapsed through vacuole treatment. This paper is meaningful in that extracellularly isolated yeast-derived vacuoles are a first attempt to utilize vacuoles for viral treatment. IMPORTANCE The study assesses the vacuoles isolated from the yeast Saccharomyces cerevisiae as green antiviral agents to decrease the concerns about massive use of chemical antiviral agents and its side effects. To prevent the spreading of infectious diseases, personal or public use of antiviral agents is encouraged. The concern about the active compounds of these chemical antiviral agents has grown. Active compounds of antiviral agents have potential side effects on human health and the environment. Our proposed approach suggests effective and green antivirus material from a nonhazardous yeast strain. Also, large-scale production using a fermentation process can allow cost-effectiveness. The results showed sufficient reduced infectivity by vacuole treatment. The exposed vacuole can play the roles of both enzyme bomb to the virus and renewable nutrient source in the ecosystem.

Keywords: antiviral agents; enveloped virus; enzyme bomb; infection inhibition; yeast-derived vacuole.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antiviral Agents / pharmacology
  • COVID-19*
  • Ecosystem
  • Humans
  • Saccharomyces cerevisiae
  • Vacuoles
  • Viruses*

Substances

  • Antiviral Agents