Electrochemical radical-mediated selective C(sp3)-S bond activation

Chem Sci. 2022 Dec 6;14(2):372-378. doi: 10.1039/d2sc05507d. eCollection 2023 Jan 4.

Abstract

Selective C(sp3)-S bond breaking and transformation remains a particularly important, yet challenging goal in synthetic chemistry. Over the past few decades, transition metal-catalyzed cross-coupling reactions through the cleavage of C(sp3)-S bonds provided a powerful platform for the construction of target molecules. In contrast, the selective activation of widespread C(sp3)-S bonds is rarely studied and remains underdeveloped, even under relatively harsh conditions. Herein, a radical-mediated electrochemical strategy capable of selectively activating C(sp3)-S bonds is disclosed, offering an unprecedented method for the synthesis of valuable disulfides from widespread thioethers. Importantly, compared with conventional transition-metal catalyzed C-S bond breaking protocols, this method features mild, catalyst- and oxidant-free reaction conditions, as well excellent chemoselectivity towards C(sp3)-S bonds. Preliminary mechanistic studies reveal that sulfur radical species are involved in the reaction pathway and play an essential role in controlling the site-selectivity.