In situ self-assembly of amphiphilic dextran micelles and superparamagnetic iron oxide nanoparticle-loading as magnetic resonance imaging contrast agents

Regen Biomater. 2022 Dec 5:10:rbac096. doi: 10.1093/rb/rbac096. eCollection 2023.

Abstract

Polymeric micelles have long been considered as promising nanocarrier for hydrophobic drugs and imaging probes, due to their nanoscale particle size, biocompatibility and ability to loading reasonable amount of cargoes. Herein, a facile method for dextran micelles preparation was developed and their performance as carriers of superparamagnetic iron oxide (SPIO) nanocrystals was evaluated. Amphiphilic dextran (Dex-g-OA) was synthesized via the Schiff base reactions between oxidized dextran and oleylamine, and self-assembled in situ into nano-size micelles in the reaction systems. The self-assembling behaviors of the amphiphilic dextran were identified using fluorescence resonance energy transfer technique by detection the energy transfer signal between the fluorophore pairs, Cy5 and Cy5.5. Hydrophobic SPIO nanoparticles (Fe3O4 NPs) were successfully loaded into the dextran micelles via the in situ self-assembly process, leading to a series of Fe3O4 NPs-loaded micelle nanocomposites (Fe3O4@Dex-g-OA) with good biocompatibility, superparamagnetism and strongly enhanced T 2 relaxivity. At the magnetic field of 0.5 T, the Fe3O4@Dex-g-OA nanocomposite with particle size of 116.2 ± 53.7 nm presented a higher T 2 relaxivity of 327.9 mM Fe - 1 ·s-1. The prepared magnetic nanocomposites hold the promise to be used as contrast agents in magnetic resonance imaging.

Keywords: Schiff base; dextran; magnetic resonance imaging; micelle; superparamagnetic iron oxide.