Molecular identification of a flavone synthase I/flavanone 3β-hydroxylase bifunctional enzyme from fern species Psilotum nudum

Plant Sci. 2023 Apr:329:111599. doi: 10.1016/j.plantsci.2023.111599. Epub 2023 Jan 20.

Abstract

The enzyme flavone synthase Is (FNS Is) converts flavanones to flavones, whereas flavanone 3β-hydroxylases (F3Hs) catalyze the formation of dihydroflavonols, a precursor of flavonols and anthocyanins. Canonical F3Hs have been characterized in seed plants, which are evolutionarily related to liverwort FNS Is. However, as important evolutionary lineages between liverworts and seed plants, ferns FNS Is and F3Hs have not been identified. In the present study, we characterized a bifunctional enzyme PnFNS I/F3H from the fern Psilotum nudum. We found that PnFNS I/F3H catalyzed the conversion of naringenin to apigenin and dihydrokaempferol. In addition, it catalyzed five different flavanones to generate the corresponding flavones. Site-directed mutagenesis results indicated that the P228-Y228 mutant protein displayed the FNS I/F2H activity (catalyzing naringenin to generate apigenin and 2-hydroxynaringenin), thus having similar functions as liverwort FNS I/F2H. Moreover, the overexpression of PnFNS I/F3H in Arabidopsis tt6 and dmr6 mutants increased the content of flavones and flavonols in plants, further indicating that PnFNS I/F3H showed FNS I and F3H activities in planta. This is the first study to characterize a bifunctional enzyme FNS I/F3H in ferns. The functional transition from FNS I/F3H to FNS I/F2H will be helpful in further elucidating the relationship between angiosperm F3Hs and liverwort FNS Is.

Keywords: 2ODD; Ferns; Flavanone 3β-hydroxylase; Flavone synthase I; Functional characterization; Psilotum nudum.

MeSH terms

  • Anthocyanins
  • Apigenin
  • Ferns* / metabolism
  • Flavanones* / metabolism
  • Flavones* / metabolism
  • Flavonols
  • Mixed Function Oxygenases / metabolism

Substances

  • flavone synthase I
  • flavanone 3-dioxygenase
  • Apigenin
  • Anthocyanins
  • Mixed Function Oxygenases
  • Flavones
  • Flavanones
  • Flavonols