A robust and 3D-printed solar evaporator based on naturally occurring molecules

Sci Bull (Beijing). 2023 Jan 30;68(2):203-213. doi: 10.1016/j.scib.2023.01.017. Epub 2023 Jan 16.

Abstract

The interfacial solar desalination has been considered a promising method to address the worldwide water crisis without sophisticated infrastructures and additional energy consumption. Although various advanced solar evaporators have been developed, their practical applications are still restricted by the unsustainable materials and the difficulty of precise customization for structure to escort high solar-thermal efficiency. To address these issues, we employed two kinds of naturally occurring molecules, tannic acid and iron (III), to construct a low-cost, highly efficient and durable interfacial solar evaporator by three-dimensional (3D) printing. Based on a rational structural design, a robust and 3D-printed evaporator with conical array surface structure was developed, which could promote the light harvesting capacity significantly via the multiple reflections and anti-reflection effects on the surface. By optimizing the height of the conical arrays, the 3D-printed evaporator with tall-cone structure could achieve a high evaporation rate of 1.96 kg m-2 h-1 under one sun illumination, with a photothermal conversion efficiency of 94.4%. Moreover, this evaporator was also proved to possess excellent desalination performance, recycle stability, anti-salt property, underwater oil resistance, as well as adsorption capacity of organic dye contaminants for multipurpose water purification applications. It was believed that this study could provide a new strategy to fabricate low-cost, structural regulated solar evaporators for alleviating the dilemma of global water scarcity using abundant naturally occurring building blocks.

Keywords: 3D printing; Natural polyphenol; Solar desalination; Structural regulation; Underwater oil resistance.