Learning motor actions via imagery-perceptual or motor learning?

Psychol Res. 2023 Jan 21. doi: 10.1007/s00426-022-01787-4. Online ahead of print.

Abstract

It is well accepted that repeatedly imagining oneself acting without any overt behavior can lead to learning. The prominent theory accounting for why imagery practice is effective, motor simulation theory, posits that imagined action and overt action are functionally equivalent, the exception being activation of the end effector. If, as motor simulation theory states, one can compile the goal, plan, motor program and outcome of an action during imagined action similar to overt action, then learning of novel skills via imagery should proceed in a manner equivalent to that of overt action. While the evidence on motor simulation theory is both plentiful and diverse, it does not explicitly account for differences in neural and behavioural findings between imagined and overt action. In this position paper, we briefly review theoretical accounts to date and present a perceptual-cognitive theory that accounts for often observed outcomes of imagery practice. We suggest that learning by way of imagery reflects perceptual-cognitive scaffolding, and that this 'perceptual' learning transfers into 'motor' learning (or not) depending on various factors. Based on this theory, we characterize consistently reported learning effects that occur with imagery practice, against the background of well-known physical practice effects and show that perceptual-cognitive scaffolding is well-suited to explain what is being learnt during imagery practice.