Ytterbium(III) Complex with Photochromic Ruthenium(II) Acetylide Ligand: All Visible Light Photoswitching of NIR Luminescence

Inorg Chem. 2023 Feb 6;62(5):2049-2057. doi: 10.1021/acs.inorgchem.2c03628. Epub 2023 Jan 21.

Abstract

We report a ruthenium(II) bisacetylide complex bearing a photochromic dithienylethene (DTE) acetylide arm and a coordinating bipyridyl on the trans acetylide unit. Its coordination with Yb(TTA)3 centers (TTA = 2-thenoyltrifluoroacetonate) produces a bimetallic complex in which the dithienylethene isomerization is triggered by both ultraviolet (UV) light absorbed by the DTE unit and 450 nm excitation in a transition of the organometallic moiety. The redox behavior arising from the ruthenium(II) bisacetylide system is fully investigated by cyclic voltammetry and spectroelectrochemistry, revealing a lack of stability of the DTE-closed oxidized state preventing effective redox luminescence switching. On the other hand, the photoswitching of ytterbium(III) near-infrared (NIR) emission triggered by the photochromic reaction is fully operational. The electronic structure of this complex in its different states characterized by strong electronic coupling between the DTE and the ruthenium(II)-based moieties leading to metal-assisted photochromic behavior were rationalized with the help of time-dependent density functional theory (TD-DFT) calculations.