Extending Ag Nanoparticles as Colorimetric Sensor to Industrial Zinc Electrolyte for Cobalt Ion Detection

Molecules. 2023 Jan 6;28(2):592. doi: 10.3390/molecules28020592.

Abstract

The direct and rapid determination of trace cobalt ion (Co2+) in the electrolyte of zinc smelting plants is urgently needed but is impeded by the severe interference of extremely high-concentration zinc ions in the solution. Herein, colorimetric detection of Co2+ by the polyvinylpyrrolidone functionalized silver nanoparticles (PVP-AgNPs) is realized in solutions with the Zn/Co ratio being high, up to (0.8-5) × 104, which is located within the ratio range in industrial solution. The high concentration of Zn2+ induces a strong attenuation of Co2+-related signals in ultraviolet-visible (UV-vis) extinction spectra; nevertheless, a good linear range for detecting 1-6 mg/L Co2+ in 50 g/L Zn2+ solution is still acquired. The strong anti-interference toward other metal ions and the mechanism understanding for trace Co2+ detection in such a high-concentration Zn2+ solution are also revealed by systematic analysis techniques. The results extend the AgNPs as colorimetric sensors to industrial solutions, providing a new strategy for detecting trace-metal ions in industrial plants.

Keywords: colorimetric detection; industrial high-concentration zinc solution; polyvinylpyrrolidone; silver nanoparticles; trace Co2+ determination.