Yeast Expressed Hybrid Peptide CLP Abridged Pro-Inflammatory Cytokine Levels by Endotoxin Neutralization

Microorganisms. 2023 Jan 4;11(1):131. doi: 10.3390/microorganisms11010131.

Abstract

The aim of this study was to apply a strategy to express a recombinant CLP peptide and explore its application as a product derived from natural compounds. The amphiphilic CLP peptide was hybridized from three parent peptides (CM4, LL37, and TP5) and was considered to have potent endotoxin-neutralizing activity with minimal cytotoxic and hemolytic activity. To achieve high secretion expression, an expression vector of pPICZαA-HSA-CLP was constructed by the golden gate cloning strategy before being transformed into Pichia pastoris and integrated into the genome. The recombinant CLP was purified through the Ni-NTA affinity chromatography and analyzed by SDS-PAGE and mass spectrometry. The Limulus amebocyte lysate (LAL) test exhibited that the hybrid peptide CLP inhibited lipopolysaccharides (LPS) in a dose-dependent manner and was significantly (p < 0.05) more efficient compared to the parent peptides. In addition, it essentially diminished (p < 0.05) the levels of nitric oxide and pro-inflammatory cytokines (including TNF-α, IL6, and IL-1β) in LPS-induced mouse RAW264.7 macrophages. As an attendant to the control and the parental peptide LL37, the number of LPS-induced apoptotic cells was diminished compared to the control parental peptide LL37 (p < 0.05) with the treatment of CLP. Consequently, we concluded that the hybrid peptide CLP might be used as a therapeutic agent.

Keywords: apoptosis; cytotoxicity; endotoxin; hybrid peptide; immunomodulatory; inflammation.

Grants and funding

This study was funded by the National Key Research and Development Program of China (No. 2021YFD1301000), the National Natural Science Foundation of China (No. 32100156) and Chinese Universities Scientific Fund 2022TC163.